Identificação de assinaturas de carga de eletrodomésticos residenciais em Smart Meters usando Inteligência Artificial e IoT: Implementação e testbed

Thiago C. Sousa, Artur Felipe da Silva Veloso, Regenildo G. Oliveira, Antonio A Rodrigues, Davi L. Oliveira, Altamir J Gallas, José V. V. Sobral

Resumo


A identificação de eletrodomésticos individualmente na rede elétrica residencial, prover um melhor controle do consumo e detecção de anomalias presentes em alguns desses eletrodomésticos. Essa identificação só é possível se cada eletrodoméstico tiver uma assinatura de cargas. A geração da assinatura de carga, se da através de aplicações como o medidor inteligente que fornece informações necessárias para este fim. O trabalho proposto permite a leitura e detecção de eletrodomésticos residenciais presentes na rede, através da assinatura de carga individual, utilizando medidores inteligentes juntamente com Inteligência Artificial. Alguns parâmetros elétricos importantes serão analisados e detectados de forma individual. Com auxílio do algoritmo Naive Bayes, os dados da criação de assinatura de cargas são armazenados em um banco de dados e treinados para que a identificação seja possível. Contudo, é fornecido ao consumidor uma aplicação que permite identificar e classificar qualquer equipamento existente na residência quando estiver ativo, assim como anomalias e alterações presentes na rede residencial.

Texto completo:

PDF

Referências


AHMADI,H.;MARTI,J.R.Loadde composition at smart meters level using eigenloads approach. IEEE Transactions on Power Systems, IEEE, v. 30, n. 6, p. 3425–3436, 2015.

ALI, N. M. et al. Object classification and recognition using bag-of-words (bow) model.In: IEEE. 2016 IEEE 12th International Colloquiumon Signal Processing & Its Applications (CSPA). [S.l.], 2016. p. 216–220.

AMRY, Y.; GAIDI, M. E.; NACHTANE, M. Design and optimization of a smart meter to meet the growing needs of energy in morocco. In: IEEE. 2016 International Renewable and Sustainable Energy Conference (IRSEC). [S.l.], 2016. p. 1115–1118.

ASTUTI, T.; NUGROHO, H. A.; ADJI, T. B. The impact of different fold for cross validation of missing values imputation method on hepatitis dataset. In: IEEE. 2015 International Conference on Quality in Research (QiR). [S.l.], 2015. p. 51–55.

BACURAU, R. et al. Experimental investigation on the load signature parameters for nonintrusive load monitoring. Przeglad Elektrotechniczny, v. 91, n. 8, p. 86–90, 2015.

BACURAU, R. M. et al. Techniques for efficient implementation of firmware in microcontrollers based energy consumption break down smart meters. VIVECHAN International Journal of Research, v. 5, n. 1, 2014.

BOUHOURAS, A. S.; MILIOUDIS, A. N.; LABRIDIS,D.P. Development of distinctload signatures for higher efficiency of nilm algorithms. Electric Power Systems Research, Elsevier, v. 117, p. 163–171, 2014.

BURUNKAYA, M.; PARS, T. A smart meter design and implementation using zigbee based wireless sensor network in smart grid.In: . [S.l.]: IEEE, 2017.

CARDENAS, A.; AGBOSSOU, K.; GUZMÁN, C. Development of real-time admittance analysis system for residential load monitoring. In: IEEE. 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE). [S.l.], 2016. p. 696–701.

CHEN, H.-Y. et al. Identifying variable-power appliances in non-intrusive load monitoring systems. In: IEEE. Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2016 10th International Conference on. [S.l.], 2016. p. 452–457.

DARYAPURKAR, R.; KARANDIKAR, R. Wimax for data aggregation in smart grid communication network—a review. In: IEEE. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). [S.l.], 2017. p. 97– 100.

DESHMUKH, R. S.; JAGTAP, V. A survey: Software api and database for emotion recognition. In: IEEE. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). [S.l.], 2017. p. 284–289.

DHANANJAYA, W. et al. Appliance-level demand identification through signature analysis. In: IEEE. 2015 Moratuwa Engineering Research Conference (MERCon). [S.l.], 2015. p. 70–75.

DINESH, H. et al. A subspace signature based approach for residential appliances identification using less informative and low resolution smart meter data. In: IEEE 2014 9th International Conference on Industrial and Information Systems (ICIIS). [S.l.], 2014. p. 1–6.

ELAKSHUMI, S.; PONRAJ, A. A server based load analysis of smart meter systems. In: IEEE 2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2). [S.l.], 2017. p. 141–144.

GOEL, A.; GAUTAM, J.; KUMAR, S. Real time sentiment analysis of tweets using naive bayes. In: IEEE. 2016 2nd International Conference on Next Generation Computing Technologies (NGCT),. [S.l.], 2016. p. 257–261.

HAILONG, Z.; WENYAN, G.; BO, J. Machine learning and lexicon based methods for sentiment classification: A survey. In: IEEE. 2014 11th Web Information System and Application Conference (WISA). [S.l.], 2014. p. 262–265.

HUI, L. Y.; LOGENTHIRAN, T.; WOO, W. Non-intrusive appliance load monitoring and identification for smart home. In: IEEE. 2016 IEEE 6th International Conference on Power Systems (ICPS). [S.l.], 2016. p. 1–6.

JIUGEN,Y.;RUONAN,X.;ZHIHUO,L.Process model construction of the college students’ competition data mining. In: IEEE. 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA). [S.l.], 2017. p. 207–210.

KABALCI,Y.A survey on smartmetering and smart grid communication. Renewable and Sustainable Energy Reviews,Elsevier,v.57,p. 302–318, 2016.

LUAN, S.-W. et al. Development of a smart power meter for ami based on zigbee communication. In: IEEE. International Conference on Power Electronics and Drive Systems, 2009. PEDS 2009. [S.l.], 2009. p. 661– 665.

MINCHALA-AVILA, L. I. et al. Design and Implementation of a Smart Meter with Demand Response Capabilities. [S.l.]: IEEE, 2016. v. 103.

PAWAR, S.; MOMIN, B. Smart electricity meter data analytics: A brief review. In: IEEE. 2017 IEEE Region 10 Symposium (TENSYMP). [S.l.], 2017. p. 1–5.

PEREIRA,R. et al. Consumer energy management system with integration of smart meters. [S.l.]: IEEE, 2015. v. 1.

POYRAZOGLU, G.; OH, H. The impacts of electric power market simulation on engineering education. In: IEEE. 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). [S.l.], 2016. p. 1–5.

PREMNATH, S. N.; HAAS, Z. J. Security and privacy in the internet-of-things under time-and-budget-limited adversary model. IEEE Wireless Communications Letters, IEEE, v. 4, n. 3, p. 277–280, 2015.

PRIYANKA, N.; VASISHT, A. Smart cities. International Journal of Engineering Science Invention, p. 43–49, 2015.

SELVAKUMAR, G.; KAVIYA, B. J. A survey on restful web services composition. In: IEEE. 2016 International Conference on Computer Communication and Informatics (ICCCI). [S.l.], 2016. p. 1–4.

ŠÍRA, M.; ZACHOVALOVÁ, V. N. System for calibration of nonintrusive load meters with load identification ability. IEEE Transactions on Instrumentation and Measurement, IEEE, v. 64, n. 6, p. 1350–1354, 2015.

SOUSA, T. et al. Implementação de um módulo medidor para criação de assinatura de cargas utilizando internet das coisas. In: UESPI. Anais Eletrônicos ENUCOMP 2017. [S.l.], 2017. p. 353–360. ISBN 978-85-8320-201-1.

SPANÒ, E. et al. Last-meter smart grid embedded in an internet-of-things platform. IEEE Transactions on smart grid,IEEE,v.6,n.1,p. 468–476, 2015.

TONG, W. et al. A survey on intrusion detection system for advanced metering infrastructure. In: IEEE. 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC). [S.l.], 2016. p. 33–37.

ULLAH,I. et al. A survey of home energy management for residential customers. In: IEEE. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications (AINA). [S.l.], 2015. p. 666–673.

XU, W. et al. An event window based load monitoring technique for smart meters. p. 1– 1, 2014.

YANG,S.-l.; SHEN, C.etal. A review of electric load classification in smart grid environment. Renewable and Sustainable Energy Reviews, Elsevier, v. 24, p. 103–110, 2013.




DOI: http://dx.doi.org/10.13037/ras.vol14n1.221

Apontamentos

  • Não há apontamentos.


Revista de Informática Aplicada - USCS/UFABC